Weill Cornell Imaging at NewYork-Presbyterian

You are here

Positron Emission Tomography (PET)

What is positron emission tomography (PET)?

Positron emission tomography (PET) is a type of nuclear medicine procedure that measures metabolic activity of the cells of body tissues. PET is actually a combination of nuclear medicine and biochemical analysis. Used mostly in patients with brain or heart conditions and cancer, PET helps to visualize the biochemical changes taking place in the body, such as the metabolism (the process by which cells change food into energy after food is digested and absorbed into the blood) of the heart muscle.

PET differs from other nuclear medicine examinations in that PET detects metabolism within body tissues, whereas other types of nuclear medicine examinations detect the amount of a radioactive substance collected in body tissue in a certain location to examine the tissue’s function.

Since PET is a type of nuclear medicine procedure, this means that a tiny amount of a radioactive substance, called a radiopharmaceutical (radionuclide or radioactive tracer), is used during the procedure to assist in the examination of the tissue under study. Specifically, PET studies evaluate the metabolism of a particular organ or tissue, so that information about the physiology (functionality) and anatomy (structure) of the organ or tissue is evaluated, as well as its biochemical properties. Thus, PET may detect biochemical changes in an organ or tissue that can identify the onset of a disease process before anatomical changes related to the disease can be seen with other imaging processes such as computed tomography (CT) or magnetic resonance imaging (MRI).

PET is most often used by oncologists (physicians specializing in cancer treatment), neurologists and neurosurgeons (physicians specializing in treatment and surgery of the brain and nervous system), and cardiologists (physicians specializing in the treatment of the heart). However, as advances in PET technologies continue, this procedure is beginning to be used more widely in other areas.

PET may also be used in conjunction with other diagnostic tests such as computed tomography (CT) or magnetic resonance imaging (MRI) to provide more definitive information about malignant (cancerous) tumors and other lesions. Newer technology combines PET and CT into one scanner, known as PET/CT. PET/CT shows particular promise in the diagnosis and treatment of lung cancer, evaluating epilepsy, Alzheimer's disease and coronary artery disease.

How does PET work?

PET works by using a scanning device (a machine with a large hole at its center) to detect positrons (subatomic particles) emitted by a radionuclide in the organ or tissue being examined. The radionuclides used in PET scans are chemical substances such as glucose, carbon, or oxygen used naturally by the particular organ or tissue during its metabolic process. A radioactive substance is attached to the chemical required for the specific tests. For example, in PET scans of the brain, a radioactive substance is applied to glucose (blood sugar) to create a radionuclide called fluorodeoxyglucose (FDG), because the brain uses glucose for its metabolism. FDG is widely used in PET scanning.

Other substances may be used for PET scanning, depending on the purpose of the scan. If blood flow and perfusion of an organ or tissue is of interest, the radionuclide may be a type of radioactive oxygen, carbon, nitrogen, or gallium.

The radionuclide is administered either into a vein through an intravenous (IV) line or inhaled as a gas. Next, the PET scanner slowly moves over the part of the body being examined. Positrons are emitted by the breakdown of the radionuclide. Gamma rays are created during the emission of positrons, and the scanner then detects the gamma rays. A computer analyzes the gamma rays and uses the information to create an image map of the organ or tissue being studied. The amount of the radionuclide collected in the tissue affects how brightly the tissue appears on the image, and indicates the level of organ or tissue function.

How is PET performed?

  1. The patient will be asked to remove any clothing, jewelry, or other objects that may interfere with the scan.
  2. If asked to remove clothing, the patient will be given a gown to wear.
  3. The patient will be asked to empty his/her bladder prior to the start of the procedure.
  4. One or two intravenous (IV) lines will be started in the hand or arm for injection of the radionuclide. For some examinations, the radionuclide may be inhaled in a gas form rather than given through an IV.
  5. Certain types of scans of the abdomen or pelvis may require that a urinary catheter be inserted into the bladder to drain urine during the procedure.
  6. In some cases, an initial scan may be performed prior to the injection of the radionuclide, depending on the type of study being done. The patient will be positioned on a padded table inside the scanner.
  7. The radionuclide will be injected into the IV. The radionuclide will be allowed to concentrate in the organ or tissue for about 30 to 60 minutes. The patient will remain in the facility during this time. The patient will not be hazardous to other people, as the radionuclide emits less radiation than a standard x-ray.
  8. After the radionuclide has been absorbed for the appropriate length of time, the scan will begin. The scanner will move slowly over the body part being studied.
  9. When the scan has been completed, the IV line will be removed. If a urinary catheter has been inserted, it will be removed.
Weill Cornell Imaging at NewYork-Presbyterian

2315 Broadway, 4th Floor
New York, NY 10024

1305 York Avenue, 3rd Floor
New York, NY 10021

520 East 70th Street, Starr Pavilion, Ground Floor
New York, NY 10021

425 East 61st Street, 9th Floor
New York, NY 10065

416 East 55th Street
New York, NY 10022